Transformation of lactose into its 3-epimer 4-O-B-D-galactopyranosyl-D-allopyranose*

RAM. S. BHATT**, LESLIE HOUGH, AND ANTHONY C. RICHARDSON

Department of Chemistry, Queen Elizabeth College, London W8 7AH (Great Britain)

(Received February 23rd, 1976; accepted for publication, March 16th, 1976)

The monosaccharide allose rarely occurs in Nature², and has never been detected in a naturally occurring oligosaccharide. We have recently described the methyl glycoside of $4-O-\alpha-D$ -glucopyranosyl- $\beta-D$ -allopyranose³, the 3-epimer of maltose, and also the *allo*-analogue of trehalose, $\alpha-D$ -allopyranosyl $\alpha-D$ -allopyranoside⁴. In the furtherance of our work on the chemical modification of lactose¹, we have synthesised the 3-epimer of lactose, namely, $4-O-\beta-D$ -galactopyranosyl-D-allose.

^{*}The chemistry of Cellobiose and Lactose: Part V. For Part IV, see Ref. 1.

^{**}Present address: School of Medicine, University of Southern California, Los Angeles, California 90033, U. S. A.

We have previously reported⁵ that the selective hexa-O-benzoylation of methyl β-lactoside afforded the 2,6,2',3',4',6'-hexabenzoate 1 in 33% yield. Mesylation of 1 gave the 3-mesylate 2 in 80% yield, which underwent displacement of the sulphonyloxy group when treated with sodium benzoate in hexamethylphosphoric triamide at 80° for 3 days. The resulting heptabenzoate 3 was isolated crystalline in 62% yield and the allo configuration of the "reducing" ring was confirmed by its 220-MHz ¹H-n.m.r. spectrum (Table I). In particular, the H-1 resonance for 3 was 0.41 p.p.m. to low field of that for the 3-mesylate 2, indicating⁵ the presence of an axial electronegative group at C-3. The allo configuration was further confirmed by the appearance of H-3 as a narrow triplet with splittings of 3 Hz, and H-2 and H-4 as double doublets (Table I).

Acetolysis of the heptabenzoate 3 with 1% sulphuric acid in acetic anhydride afforded a mixture of four components as indicated by t.l.c. The two faster-moving

TABLE I

FIRST-ORDER ¹H-N.M.R. PARAMETERS AT 220 MHz (τ AND Hz)

Compound Solvent	C_6D_6	3 C ₆ D ₆	4 CDCl ₃	5 CDCl ₃	7 CDCl ₃
H-2	4.47 (dd)	4.30 (dd)	4.68 (dd)	4.68 (t)	5.16 (dd)
H-3	4.93 (t)	3.53 (t)	3.58 (t)	3.65 (t)	4.16 (t)
H-4	6.01 (t)	5.96 (dd)	**	• • • • • • • • • • • • • • • • • • • •	6.18 (dd)
H-5		~5.65 (m)			5.82 (m)
Н-ба	1 526.62	5.13 (dd)] = = = =]	}
H-6b	~ 5.36−6.2	5.32 (dd)	5.3–5.9	5.35-5.9	5.62-6.23
H-1′	5.22 (d)	5.01 (d)	4.95 (d)	4.98 (d)	5.44 (d)
H-2′	3.76 (dd)	3.80 (t)	4.33 (dd)	4.37 (g)	4.83 (q)
H-3′	4.41 (dd)	4.37 (dd)	4.47 (dd)	4.53 (dd)	5.01 (dd)
H-4′	4.10 (d)	3.77 (m)	4.12 (d)	4.16 (d)	4.65 (d)
H-5'	6.43 (t)	6.22 (t)	()		(4)
H-6'a	1	5.44 (dd))	1	1
H-6′b	~5.36-6.2	5.82 (dd)	} ∼5.3–5.9	5.35-5.9 (m)	5.62-6.23
ОМе	6.96 (s)	6.83 (s)	,	,	,
OMs	7.03 (s)	(-)	OAc 8.0 (s)	OAc 8.0 (s)	
71.2	8.2	8.2	8.4	4	9
J _{2,3}	9.6	3	3.6	4	3
73,4	9.6	3	3.6	4	3
4,5		10		•	_
T _{5,61}		2.2			
75,6b		6			
6a.6b		12			
T _{1',2'}	8	8	8	8	8
T _{2',3'}	10	9	10.4	10.4	10.8
7 _{3′.4′}	3.6	-	3.6	3.6	4
4',5'	~1		~1	~1	~1
5',6'a	6	~4.4	-	•	<u>.</u>
5',6'b	7	~7			
6'a.6'b		12.4			

274 NOTE

components were present in small proportions and were not isolated pure after chromatography. However, they were assumed to be products arising from acetolytic cleavage of the inter-glycosidic bond. The two major components were isolated in 21% and 9% yield and shown to be β - and α -1-acetates (4 and 5), respectively. A mixed fraction containing both anomers was also isolated (7% yield). The structures of the two 1-O-acetyl derivatives were readily assigned by their 220-MHz ¹H-n.m.r. spectra, which were largely first-order (Table I). In the β anomer, H-1 resonated at τ 3.75 with $J_{1,2}$ 8.4 Hz, whereas the α anomer resonated at τ 3.63 but had a small coupling (4 Hz). In both anomers, the resonances due to H-2,3,1',2',3', and 4' were readily recognised and were in full agreement with the structure assigned.

O-Debenzoylation of the mixture of α and β anomers (5 and 4; obtained above) gave the parent disaccharide 4-O- β -D-galactopyranosyl-D-allose (6), which was isolated crystalline in 50% yield. Acetylation of 6 with pyridine-acetic anhydride gave the β -octa-acetate 7 (70% yield), the structure of which was confirmed by its 220-MHz ¹H-n.m.r. spectrum (Table I).

EXPERIMENTAL

For general notes, see Ref. 1.

Methyl 2,6-di-O-benzoyl-3-O-mesyl-4-O-(2,3,4,6-tetra-O-benzoyl-β-D-galacto-pyranosyl)-β-D-glucopyranoside (2). — A solution of the hexabenzoate⁵ 1 (2 g) in anhydrous pyridine (15 ml) was cooled in an ice-bath, mesyl chloride (2 ml) was slowly added, and the solution was stored at 0° for 20 h. T.l.c. (chloroform-ethyl acetate, 15:1) then indicated completion of reaction. The mixture was poured into stirred ice-water, the brown precipitate was filtered off and washed well with water and ethanol, and a chloroform solution of the precipitate was decolorised with charcoal. Two recrystallisations of the product from chloroform-light petroleum gave the 3-mesylate 2 (1.7 g, 80%), m.p. 121-124°, $[\alpha]_D$ +67° (c 1, chloroform) (Found: C, 63.3; H, 4.83. $C_{56}H_{50}O_{19}S$ calc.: C, 63.5; H, 4.72%).

Methyl 2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl)-β-D-allopyranoside (3). — A mixture of the 3-mesylate 2 (2 g), hexamethylphosphoric triamide, and sodium benzoate (2 g) was maintained at 105° (bath) for 3 days with stirring. The mixture was then cooled and poured into ice-water (\sim 80 ml), and the resulting, white precipitate was filtered off, washed well with water, and air-dried. Recrystallisation from hot 2-propanol gave the analytically pure heptabenzoate 3 (1.3 g, 62%), m.p. 107-109°, [α]_D +33° (c 1, chloroform) (Found: C, 68.6; H, 5.00. c₆₂H₅₂O₁₈ calc.: C, 68.65; H, 4.79%).

Acetolysis of methyl 4-O-β-D-galactopyranosyl-β-D-allopyranoside heptabenzoate (3). — The heptabenzoate 3 (2 g) was dissolved in acetic anhydride (5 ml), the solution was cooled in an ice bath, and 1.5% sulphuric acid in acetic anhydride (15 ml) was slowly added. When the addition was complete, the mixture was kept at room temperature for 20 h and t.l.c. (chloroform-ethyl acetate, 25:1) then showed four

NOTE 275

products, namely two slow-moving (major) and two fast-moving (minor) components. The mixture was poured into ice-water, and the precipitated solid was filtered off, and washed well with water and then with a little ethanol (4-5 ml).

Fractionation by dry-column chromatography⁶ on silica gel, using dichloromethane-ethyl acetate (50:1) as eluant, first gave a small amount of a mixture of the two minor components which could not be purified and was discarded. Later fractions contained the faster-moving, major component which crystallised from chloroform-light petroleum to give 1-O-acetyl-2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)- β -D-allopyranose (4; 0.42 g, 21%), m.p. 113-116°, [α]_D +33° (c 1, chloroform) (Found: C, 67.8; H, 4.42. C₆₃H₅₂O₁₉ calc.: C, 68.0; H, 4.67%).

Subsequent fractions contained both major components and were concentrated to dryness to give material (0.15 g, 7%) which was used for de-esterification (see below). Later fractions contained the slower-moving, major component which crystallised from chloroform-light petroleum to give 1-O-acetyl-2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranosyl)- α -D-allopyranose (5) as a white, microcrystalline powder (0.18 g, 9%), m.p. 117-122°, [α]_D +51° (c 1, chloroform) (Found: C, 67.75; H, 4.51. $C_{63}H_{52}O_{19}$ calc.: C, 68.0; H, 4.67%).

4-O-β-D-Galactopyranosyl-D-allose (6). — The mixed fraction described above (0.15 g) was dissolved in methanol (8 ml), freshly prepared 0.4M methanolic sodium methoxide (0.5–1.0 ml) was added (pH ~10), and the mixture was stirred at room temperature for 2 days. T.l.c. (methanol-ethyl acetate-water, 2:3:3) then showed one product, and the mixture was neutralized with Amberlite IR-120 (H⁺) resin and concentrated. The residue was crystallised from aqueous ethanol to give the disaccharide 6 (75 mg, 50%), m.p. 210–212°, [α]_D +49° (3 min) \rightarrow +50.2° (30 min, constant value) (c 1, water) (Found: C, 42.1; H, 6.20. $C_{12}H_{22}O_{11}$ calc.: C, 42.1; H, 6.43%).

Acetylation of 6 with acetic anhydride-pyridine gave the octa-acetate 7 as white needles (70%), m.p. 104-106° (from ethanol), $[\alpha]_D + 13^\circ$ (c 1, chloroform) (Found: C, 49.5; H, 5.4. $C_{28}H_{38}O_{19}$ calc.: C, 49.55; H, 5.6%).

ACKNOWLEDGMENTS

We are indebted to P.C.M.U. Harwell for 220-MHz spectra, and Queen Elizabeth College for a scholarship to R.S.B.

REFERENCES

- 1 R. S. BHATT, L. HOUGH, AND A. C. RICHARDSON, Carbohydr. Res., 49 (1976) 103-118.
- P. BEYLIS, A. S. HOWARD, AND G. W. PEROLD, Chem. Commun., (1971) 597; H. KAUSS, Z. Pflanzenphysiol., 53 (1965) 58-63.
- 3 P. L. DURETTE, L. HOUGH, AND A. C. RICHARDSON, J. Chem. Soc. Perkin I, (1974) 88-96.
- 4 G. G. BIRCH, C. K. LEE, A. C. RICHARDSON, AND Y. ALI, Carbohydr. Res., 49 (1976) 153-161.
- 5 R. S. BHATT, L. HOUGH, AND A. C. RICHARDSON, Carbohydr. Res., 32 (1974) C4-C6.
- 6 L. HOUGH, A. K. PALMER, AND A. C. RICHARDSON, J. Chem. Soc. Perkin I, (1972) 2513-2517.